Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Immunol ; 14: 1104828, 2023.
Article in English | MEDLINE | ID: covidwho-2245907

ABSTRACT

In December 2019, a novel pneumonic condition, Coronavirus disease 2019 (COVID- 19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), broke out in China and spread globally. The presentation of COVID-19 is more severe in persons with underlying medical conditions such as Tuberculosis (TB), Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) and other pneumonic conditions. All three diseases are of global concern and can significantly affect the lungs with characteristic cytokine storm, immunosuppression, and respiratory failure. Co-infections of SARS-CoV-2 with HIV and Mycobacterium tuberculosis (Mtb) have been reported, which may influence their pathogenesis and disease progression. Pulmonary TB and HIV/AIDS patients could be more susceptible to SARS-CoV-2 infection leading to lethal synergy and disease severity. Therefore, the biological and epidemiological interactions of COVID-19, HIV/AIDS, and TB need to be understood holistically. While data is needed to predict the impact of the COVID-19 pandemic on these existing diseases, it is necessary to review the implications of the evolving COVID-19 management on HIV/AIDS and TB control, including therapy and funding. Also, the impact of long COVID on patients, who may have this co-infection. Thus, this review highlights the implications of COVID-19, HIV/AIDS, and TB co-infection compares disease mechanisms, addresses growing concerns, and suggests a direction for improved diagnosis and general management.


Subject(s)
Acquired Immunodeficiency Syndrome , COVID-19 , Coinfection , Tuberculosis , Humans , Acquired Immunodeficiency Syndrome/epidemiology , HIV , Coinfection/epidemiology , Pandemics , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Tuberculosis/diagnosis
2.
Sci Rep ; 12(1): 21582, 2022 12 14.
Article in English | MEDLINE | ID: covidwho-2160317

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic devastated countries worldwide, and resulted in a global shutdown. Not all infections are symptomatic and hence the extent of SARS-CoV-2 infection in the community is unknown. The paper presents the dynamics of the SARS-CoV-2 epidemic in the Greater Accra Metropolis, describing the evolution of seroprevalence through time and by age group. Three repeated independent population-based surveys at 6-week intervals were conducted in from November 2020 to July 2021. The global and by age-groups weighted seroprevalences were estimated and the risk factors for SARS-CoV-2 antibody seropositivity were assessed using logistic regression. The overall age-standardized SARS-CoV-2 antibody seroprevalence for both spike and nucleocapsid increased from 13.8% (95% CI 11.9, 16.1) in November 2020 to 39.6% (95% CI 34.8, 44.6) in July 2021. After controlling for gender, marital status, education level, and occupation, the older age group over 40 years had a higher odds of seropositivity than the younger age group (OR 3.0 [95% CI 1.1-8.5]) in the final survey. Pupils or students had 3.3-fold increased odds of seropositivity (OR 3.2 [95% CI 1.1-8.5]) compared to the unemployed. This study reinforces that, SARS-CoV-2 infections have been significantly higher than reported.


Subject(s)
COVID-19 , Humans , Aged , COVID-19/epidemiology , SARS-CoV-2 , Seroepidemiologic Studies , Ghana/epidemiology , Pandemics , Antibodies, Viral
3.
BMC Med ; 20(1): 370, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-2053904

ABSTRACT

BACKGROUND: West Africa has recorded a relatively higher proportion of asymptomatic coronavirus disease 2019 (COVID-19) cases than the rest of the world, and West Africa-specific host factors could play a role in this discrepancy. Here, we assessed the association between COVID-19 severity among Ghanaians with their immune profiles and ABO blood groups. METHODS: Plasma samples were obtained from Ghanaians PCR-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive individuals. The participants were categorized into symptomatic and asymptomatic cases. Cytokine profiling and antibody quantification were performed using Luminex™ multiplex assay whereas antigen-driven agglutination assay was used to assess the ABO blood groups. Immune profile levels between symptomatic and asymptomatic groups were compared using the two-tailed Mann-Whitney U test. Multiple comparisons of cytokine levels among and between days were tested using Kruskal-Wallis with Dunn's post hoc test. Correlations within ABO blood grouping (O's and non-O's) and between cytokines were determined using Spearman correlations. Logistic regression analysis was performed to assess the association of various cytokines with asymptomatic phenotype. RESULTS: There was a trend linking blood group O to reduced disease severity, but this association was not statistically significant. Generally, symptomatic patients displayed significantly (p < 0.05) higher cytokine levels compared to asymptomatic cases with exception of Eotaxin, which was positively associated with asymptomatic cases. There were also significant (p < 0.05) associations between other immune markers (IL-6, IL-8 and IL-1Ra) and disease severity. Cytokines' clustering patterns differ between symptomatic and asymptomatic cases. We observed a steady decrease in the concentration of most cytokines over time, while anti-SARS-CoV-2 antibody levels were stable for at least a month, regardless of the COVID-19 status. CONCLUSIONS: The findings suggest that genetic background and pre-existing immune response patterns may in part shape the nature of the symptomatic response against COVID-19 in a West African population. This study offers clear directions to be explored further in larger studies.


Subject(s)
COVID-19 , ABO Blood-Group System , Biomarkers , COVID-19/epidemiology , Cytokines , Ghana/epidemiology , Humans , Interleukin 1 Receptor Antagonist Protein , Interleukin-6 , Interleukin-8 , SARS-CoV-2
4.
Diagnostics (Basel) ; 11(11)2021 Nov 13.
Article in English | MEDLINE | ID: covidwho-1512177

ABSTRACT

BACKGROUND: Although comprehensive public health measures such as mass quarantine have been taken internationally, this has generally been ineffective, leading to a high infection and mortality rate. Despite the fact that the COVID-19 pandemic has been downgraded to epidemic status in many countries, the real number of infections is unknown, particularly in low-income countries. However, precision shielding is used in COVID-19 management, and requires estimates of mass infection in key groups. As a result, rapid tests for the virus could be a useful screening tool for asymptomatic virus shedders who are about to come into contact with sensitive groups. In Africa and other low- and middle-income countries there is high rate of COVID-19 under-diagnosis, due to the high cost of molecular assays. Exploring alternate assays to the reverse transcriptase polymerase chain reaction (RT-PCR) for COVID-19 diagnosis is highly warranted. AIM: This review explored the feasibility of using alternate molecular, rapid antigen, and serological diagnostic assays to accurately and precisely diagnose COVID-19 in African populations, and to mitigate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RT-PCR diagnostic challenges in Africa. METHOD: We reviewed publications from internet sources and searched for appropriate documents available in English. This included Medline, Google Scholar, and Ajol. We included primary literature and some review articles that presented knowledge on the current trends on SARS-CoV-2 diagnostics in Africa and globally. RESULTS: Based on our analysis, we highlight the utility of four different alternatives to RT-PCR. These include two isothermal nucleic acid amplification assays (loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA)), rapid antigen testing, and antibody testing for tackling difficulties posed by SARS-CoV-2 RT-PCR testing in Africa. CONCLUSION: The economic burden associated COVID-19 mass testing by RT-PCR will be difficult for low-income nations to meet. We provide evidence for the utility and deployment of these alternate testing methods in Africa and other LMICs.

SELECTION OF CITATIONS
SEARCH DETAIL